Dose-responses for solar radiation exposure reveal high sensitivity of microbial decomposition to changes in plant litter quality that occur during photodegradation.
Mendez, M. S., Ballare, C. L. and Austin, A. T.
Instituto de Investigaciones Fisiologicas y Ecologicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Agronomia, Universidad de Buenos Aires.
IIBio, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de San Martin, B1650HMP, Buenos Aires, Argentina.
Plant litter decomposition is a key process for carbon (C) turnover in terrestrial ecosystems. While sunlight has been shown to cause and accelerate carbon release in semiarid ecosystems, the dose-response relationships for these effects have not been evaluated. We conducted a two-phase experiment where plant litter of three species was subjected to a broad range of cumulative solar radiation (CSR) exposures under field conditions. We then evaluated the relationships between CSR exposure and abiotic mass loss, litter quality and the subsequent biotic decomposition and microbial activity in litter. Dose-response relationships demonstrated that CSR exposure was modestly correlated with abiotic mass loss but highly significantly correlated with lignin degradation, saccharification, microbial activity and biotic decay of plant litter across all species. Moreover, a comparison of these dose-response relationships suggests that small reductions in litter lignin due to exposure to sunlight may have large consequences for biotic decay. These results provide strong support for a model that postulates a critical role for lignin photodegradation in the mechanism of photofacilitation and demonstrate that, under natural field conditions, biotic degradation of plant litter is linearly related with the dose of solar radiation received by the material before coming into contact with decomposer microorganisms.
New Phytologist : (2022)